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The energy flux in gravity-capillary wave spectra has been obtained using Has- 
selmann’s (1962) perturbation analysis for a homogeneous Gaussian sea. As 
expected, resonant interactions now appear at  second order, and a third-order 
perturbation analysis shows that energy is redistributed from waves with inter- 
mediate wavelengths (in the neighbourhood of 1-7 om) toward gravity and capil- 
lary waves. Numerical computations are also obtained for the energy flux and 
the interaction time of a sharply peaked spectrum consisting of wavenumbers 
concentrated around a single wavenumber, superposed on a smooth background 
spectrum. The range of validity of the inviscid results is discussed. 

1. Introduction 
The resonant nonlinear interactions of surface gravity waves are weak, 

of third order, and their dynamics for discrete interactions have been investigated 
by Phillips (1960), Longuet-Higgins (1962) andBenney (1962). Theenergy transfer 
in gravity wave spectra has been found to be of fourth order by Hasselmann 
(1962, 1963a, b ) ,  using a fifth-order perturbation analysis, and the energy of the 
waves is redistributed from the waves with intermediate wavenumbers to gravity 
waves of lower and higher wavenumbers. 

For gravity-capillary waves the dispersion relation w = w ( k )  connecting the 
radian frequency w and the wavenumber k becomes concave for wavenumbers 
for which surface tension becomes important and this allows resonant interactions 
among gravity-capillary waves at second order. Energy is exchanged among a 
triad of waves; for discrete interactions the dynamios have been investigated in 
detail by McGoldrick (1965, 1970) and Simmons (1969). The general form of the 
transfer expression for triad interactions in case of a continuum of waves is well 
known from solid-state and plasma physics and is given by Hasselmann (1966, 
1968). 

Wave tank measurements of slope spectra by Cox (1958) and by Wright & 
Keller (1971)) and open-seas height spectral measurements by Valenzuela, 
Laing & Daley (1971) show a ‘dip ’ in the spectrum (a marked reduction of ampli- 
tude) for wavelengths in the neighbourhood of 1-7 ern for wind speeds smaller 
than 6-7 m/s. To discover whether this ‘dip’ in the spectrum for 1.7 cm waves 
is the result of the dynamics of the nonlinear wave-wave resonant interactions 
we have applied Hasselmann’s (1962) inviscid formulation to obtain the energy 
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flux in gravity-capillary wave spectra; now, of course, we must include surface 
tension. 

In  this formulation we preserve the assumption that the linear approximation 
for the sea surface is homogeneous, stationary and Gaussian. Now the resonant 
interactions are stronger, of second order, and they should be most important 
in the overall energy balance of the wind-sea interaction. The effect of viscosity, 
as will be discussed later, will restrict the validity of the inviscid results to wave- 
lengths in the neighbourhood of 1.7 em. 

If we consider the form of the energy -transfer expression for gravity-capillary 
waves of small slopes, further insight should be gained into the growth of the 
spectrum in its initial stages. For example, McGoldrick (1965) found that for 
discrete wave interactions typical interaction times for 1-2 cm wavelengths are 
smaller than the wind growth rates. Thus, wave-wave interactions should play 
an important role in the development of the spectrum after its initial generation 
by Phillips' (1957) resonance mechanism. 

2. Perturbation analysis 
The analysis used in this formulation is similar to that given by Hasselmann 

(1962) and the notation used will be that of his paper. The analysis applies to 
irrotational motion of a horizontally unbounded fluid of infinite depth (z  = - 00) 

with a free surface a t  z = 6 (x, y; t ) ,  where x, y andz denote Cartesian co-ordinates, 
with x, y in the horizontal plane, and t is time. The velocity potential $(x, y, z ;  t )  
and the surface deviation 6 satisfy the following well-known differential equations 
which now include surface tension: 

= 0 at  z = 6, (2.3) 
at N 3  

p is the water density, T' is the surface tension and g is gravity; Q, and 6 satisfy 
given initial conditions for t = 0. 

Here, we shall not describe the perturbation analysis in detail and we merely 
point out some of the important steps and some of the differences between this 
analysis and that given by Hasselmann (1962). The boundary conditions (2.2) 
and (2.3) are, as usual, expanded in a Taylor series about z = 0, and the velocity 
potential + and the surface deviation 6 are expanded in a series: 

and 6 = 1 6 + 2 < + 3 < +  ... . (2.5) 
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Since the wave field is taken to be a homogeneous and Gaussian random 
function, at every order $ and [ can be approximated by Fourier sums: 

and 

where k = Ikl and x = (x, y). The complex random Fourier coefficients in (2.6) 
and (2.7) are independent for each wavenumber and since $ and [ are real 
quantities it follows that ,$k = (,$-k)* and ,zk = (,z-k)*, where the asterisk 
denotes the complex conjugate. 

Substituting (2.4)-(2.7) into the boundary condition expansions about z = 0 
and collecting terms of the same order, to &st order we obtain the familiar dif- 
ferential equations 

and (gf Tk2) 1Zk(t) a l$k( t ) /a t  = 0. (2.9) 

l$k(t) = l@Dk' e-i"kt + l@i e i w k t ,  

1Zk(t) = 12; e-&kt + 12,- eiOkt, 

The solutions of (2.8) and (2.9) are well known and are 

(2.10) 

(2.11) 

and w i  = gk + Tk3, the dispersion relation for 
and lZ$ indicate the 

The second-order velocity potential satisfies the inhomogeneous harmonic 

with lZ$ = [ & iwJ(g + Tk2)] 
gravity-capillary waves, and T = T' /p .  The signs in 
direction of propagation of a wave of wavenumber k. 

differential equation 

where sl, s2 = , the summation is over k, s1 and s,, and 

i 
D%,% = 5{ (w1f w2)  (k1k2- k,. k,) + wlw,(wl+ w,) (A +A) g+Tk? g+Tki 

in which we have used the abbreviation w1 = sl@kl and w2 = szwk, .  
The dispersion relation for gravity-capillary waves, wz = gk + Tk3, is concave 

toward the capillary region, allowing the possibility of resonant excitations of 
(2.12), that is w i  = (s1wk1+t?2wk,)2 and k, + k, = k, can be satisfied simultane- 
ously; see McGoldrick (1965). Thus non-steady harmonic solutions (with ampli- 
tude increasing with time) appear at second order for gravity-capillary waves, 
whereas for gravity waves they appear at  third order, see Hasselmann (1962). 
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At third order, the velocity potential for gravity-capillary waves satisfies a 
more complicated inhomogeneous harmonic differential equation. The excita- 
tion now is partly composed of already non-steady harmonic solutions : 

( g + w g )  3#k = Dpsa,s3 i,ka,ks 1 Qpsi k i l  k a l  @*3 ks 
ki+ka+ka= k 

S,,%, 8s 

x $1(wka+k3, - Szwk, - s 3 0 k a ;  t )  e-+i%t+ non-contributing terms, 

where Dgg;,,$ = 2Dw1~wa'"~Dsa;83 ki,kz+ks kz k3 and 91(w,  w ' ;  t )  is the solution of 
(2.13) 

d2$/dt2 + 02$ = eiwPt with $ = d$/dt = 0 at t = 0. 

3. The energy transfer 

given by 
For gravity-capillary waves the average energy per unit area of the sea is 

where the overbar indicates an ensemble average. 
Expanding (3.1) in a Taylor series about z = 0 for a homogeneous sea, sub- 

stituting the expansions (2.4) and (2.5) for q5 and 6 and collecting terms of equal 
order we find that the mean energy per unit area of the sea is given by the per- 
turbation series 

in which the odd terms vanish for a Gaussian sea and the first two even terms are 
given by 

E = 2E+3E+4E+6E+6E+...,  (3.2) 

,E = B P ( ~ $ ~ )  + + p g ~ + ~ T r ( ~ 1 5 . ~ l C )  = 

+ $P9,52 + p g z  + *T' (Q 2 5 .  Q 2 5 )  + T'(V, 5. Q3 5), (3.4) 

where dk = dk,dk, and F(k) is the two-dimensional energy spectrum for wave 
components travelling in the positive k direction and for a homogeneous, station- 
ary Gaussian process completely determines the surface in the linear approxima- 
tion. 

The problem then reduces to finding the time-dependent covariance products 
which for gravity-capillary waves appear to order 4E; for gravity waves they 
did not appear until the higher order 6E. The time-dependent covariance products 
contributing to 4E can be found using (2.12) and (2.13) with the asymptotic 
formulae given in Hasselmann (1962). Since the procedure followed is quite 
similar to that given by Hasselmann, here we shall only point out that the 
time-dependent terms contributing to 4E increase linearly with time and are 
expressible in terms of F(k), the two-dimensional energy spectrum for the linear 
approximation to the sea. 
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After performing the lengthy algebra, keeping in mind that we only include 
time-dependent terms of order up to 4E, we obtain the following expression for 
the energy transfer in gravity-capillary wave spectra, which has been made to 
satisfy the laws of conservation of energy and momentum : 

F(k2) -wk,F(k3) F(ki) + wk1F(k3) F(k2)) 

6(Wk3 + @k1) dk~ldkul, (3.5) 

where 8 is the Dirac delta function. The first integral in (3.5) is the contribu- 
tion by sum resonant interaction, k, + k, = k,, and the second integral is the con- 
tribution from difference resonant interactions, k, - k, = k, and k,- k, = ks. 

4. Interpretation and results 
As expected, the transfer of energy in gravity-capillary wave spectra is among 

a triad of waves, energy being transferred from two active components to  a third 
paasive component. Two types of interactions participate, sum resonant interac- 
tions, which satisfy k, + k, = k, and Wkl + Wk, = Wg, simultaneously, and differ- 
ence resonant interactions, which satisfy k, - k, = k, and wrl - Wk, = u k 3  

simultaneously. 
A more quantitative investigation of the energy transfer is obtained by 

evaluating (3.5) for a polar two-dimensional spectrum S(k,  a), which is related to 
the energy spectrum by 

We put X(k, a) = S(k)  &'(a) with S(k)  = 0.01 k-4exp {- Ckm/k), where km = (g/T)* 
and C is a constant. Various spreading factors S(a)  are used and have been nor- 
malized in the half plane. 

On account of the 6 functions, the energy transfer is a line integral in which 
the path of integration is found from the resonant interaction condition 

S(k ,  a) = kF(k)/2pw;. (4.1) 

Wk, ? wkl = @ha) k, ? k, = k3, (4.2) 

where the upper signs apply for sum resonant interactions and the lower signs 
apply for difference interactions. 

Denoting the angle between k, and k3 by /3, the following cubic equation is 
obtained from (4.2) : 

{K3( 1 -k Ki) -k K1( 1 + Kf)  T 2[K1K3( 1 -k Kf)  (1 -k Kg)]*}2 ~ (Kq f K:) (1 f K; + K;), = 0, 
k 8K;G 8 ~ ;  K$ 

(4.3) 

where the upper signs again apply for sum resonant interactions and the lower 
signs apply for difference resonant interactions, K, = k,/k,  and K~ = k3/kTa. 
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The solution of (4.3) was given in graphical form for sum resonant interactions 
by McGoldrick (1965). The point to be made here is that for a fixed value of k, 
the sum resonant interactions contribute for k, 2 2&, and the difference reson- 
ant interactions should be active for all k,, except that for gravity waves the other 
two components should be in the capillary region and for k, in the capillary region 
the contribution will come for components in both the gravity region and in the 
capillary region. Thus, in general, viscosity should be important to the energy 
transfer for k, both in the gravity region and in the capillary region. 

The actual expression used for the computation of the energy flux is given 
below : 

at 0 j=l 

+%% S(k,,  af’) S(E,, a3) 
k 2  @k, 

where 

and 
I 0 for (cospl 1. 

As in the case of gravity waves, the transfer coefficients T(+) have integrable 
singularities for sinp = 0. The sums in (4.4) over the index j account for the two 
possible angular solutions which can occur owing to the ambiguity in the sign of 

in (4.3). For the sum resonant interactions the integrand has two integrable 
singularities for each value of k, except k, = 2Bk,, for which there is a single 
discontinuity at Ic, = k,/29 and the integrand is zero for all other k,. For the 
difference resonant interaction the integrand has a single integrable singularity 
for each value of k,. 

The main contribution to  the energy transfer is from wave components almost 
parallel to each other and these components in general have different wave- 
numbers, except for difference resonance interactions and for k, = k,/24, where 
k, = k,/29 and k, = 29 k,, and for sum resonant interactions and for k, = 24 k,, 
where El = E ,  = km/2t. 

Numerical results have been obtained from (4.4) with a CDC-3600 machine, 
using a variable-interval trapezoidal integration scheme to handle the integrable 
singularities at  sinp = 0. A minimum interval low6 x 4 of k, was used for k,, 
and away from the singularities the interval was allowed to increase to 0.1 k,, 
always keeping the integration error to less than 0.1 yo at each step. The path of 
integration was determined from (4.3) for a fixed k3; cos p was determined for 
each k, within 0 and 20 k,; we have taken g = 980 cm/s2 and T = 74 cm3/s2. 
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FIGURE 1. Energy transfer for a gravity-capillasy wave spectrum with different spreading 
factors. For the c0s4a spreading factor, the energy flux curve has been truncated near the 
discontinuity a t  k, = 2hm.  = 0, S(k)  = kP4 exp{ - 1.5 k,lk). 

In  figure 1 the energy flux is shown for various spreading factors for C = 1.5 in 
the exponential factor of the radial part of the spectrum. As in the case of gravity 
waves, see Hasselmann (1963b), the energy transfer is greatest for the most direc- 
tive spectrum. The energy flux now has a discontinuity at  k, = 2*km which is 
connected with the instability of 2.44 em wavelengths. Energy is transferred to 
the second harmonic with wavelengths of 1.22cm; see Pierson & Fife (1961), 
McGoldrick (1965) and Simmons (1969). 

The general shape of the energy-transfer curve for gravity-capillary waves is 
similar to that found for gravity waves by Hasselmann, except for the dis- 
continuity at k, = 29 k,. Energy is principally redistributed from intermediate 
wavenumbers, in our case near k,, toward smaller and larger wavenumbers. 
Thus the ‘dip’ in the spectrum for light winds could be a result of the energy 
transfer produced by wave-wave resonant interactions. In  figure 2, the energy 
flux in various directions with respect to the sea spectrum is shown for a eos2 a 

33 F L M  54 
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FIGURE 2. Energy transfer for a gravity-capillary wave spectrum with cos a4 spreading 
factor for several directions. S(a)  = 21n cos2 a, S ( k )  = k4 exp { - 1.5 k,/k}. 

spreading factor. For a cross-wind, a, = 90°, the energy flux is positive for all 
wavenumbers but quite small, and cannot be drawn on the same scale. 

The interaction of a line spectrum with a background continuum can also 
be investigated using the results of this formalism. Let the line spectrum F,(k) 
be approximately represented by a narrow peak at k, and let it be superimposed 
on a smooth ‘local sea’ spectrum E’(k). If the total energy of this ‘line spectrum’ 
is U = jJ F,(k) dk, the rate of change of energy U can be obtained by integrating 
(3.5) over a small region around k,, where we let k, = k,, then 

The first integral in (4.5) applies for sum resonant interactions, k,+k, = k,, 
and the second integral is the contribution from difference resonant interactions, 
k,-k,= k,andk,-k2= k,. 
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FIGURE 3. Decay time T for a ' line spectrum' of gravity-capillary waves travelling through 
a ' local' sea spectrum with different spreading factors. See text. 

a, = 0, S(k )  = k4 exp { - 1.5 km/k). 

The solution of (4.5) is 
U = UOe-+, 

where 7-1 is given by the integrals in the curly brackets of (4.5). 
The interaction time of a line spectrum and a background sea have been ob- 

tained for the polar two-dimensional spectrum (4.1); the results are given in 
figure 3 as a, function of spreading factors for C = 1.5 and in figure 4 the inter- 
action time is plotted as a function of azimuthal direction with respect to the sea 
direction for a cos2 a spreading factor. As expected, the interaction times obtained 
here are longer than those given by McGoldrick (1965) for discrete interactions. 
For gravity waves, Hasselmann (1963b) also found the interaction times to be 

33-2 
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FIGURE 4. Decay time 7 for a ' line spectrum' of gravity-capillary waves travelling, in 
various directions, through a ' local' sea spectrum with a cos2 a spreading factor. 

S(a)  = 2/7rcos2a, X(k) = 10-2k-4 exp(-1.5km/k}. 

greater than those predicted by Phillips (1960) for discrete interactions. The 
dependence of the energy flux and the decay time of a line spectrum on the stage 
of development of the sea is illustrated in figures 5 and 6, respectively. As observed, 
these parameters are quite sensitive to the growth of the sea spectrum; the 
applicability of the inviscid results will be discussed in the next section. 

5. The effect of viscosity 
For discrete resonant interactions McGoldrick (1965) verified that, in the 

first approximation, the effect of viscosity is to introduce a damping factor and a 
phase change in each wave component participating in the interaction. In  
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FIGURE 5. Energy transfer for a gravity-capillary wave spectrum in various stages of 
development. a3 = 0, S(a) = 2/ncos2 a, S(k) = k-4 exp { - Ck,/k}. 

addition, McGoldrick found that viscosity may not be significant for wave- 
numbers between 0.7 km and about 10 k, for sum interactions having k, + k, = k, 

However, in the continuous case investigated in the previous sections, the 
major contribution to the energy transfer and interaction (decay) time arises 
from wave components which are nearly parallel and of different wavenumbers, 
in most cases. Por example, consider the case of difference interactions in which 
k, - k, = k, and, of course, - Wk, = Wks is also satisfied; in this case, when k, is 
in the gravity region both k, and k, may be in the capillary region and for k, in the 
capillaryregion k, may also be in the capillary region, with k, in the gravity region. 

Thus in the continuous case the effect of viscosity must be investigated anew. 
One obvious constraint is that the time constant Tv of viscous damping of the 
wave of largest wavenumber participating must be greater than the wave period 
T, of the wave of smallest wavenumber. These time constants for the wave 
amplitudes are given by 

and Wk, f Wkz = Wka with k, = k,. 

T, = (2vk2)-l (5.1) 

and T, = 27~(glc + Tk3)-3, (5 .2 )  
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FIGURE 6. Decay time 7 for a'  line spectrum' of gravity-capillary waves travelling through 
a ' local' sea spectrum in various stages of development. 

a, = 0, S(a) = 2/1T cos2 a, S( k )  = 10-2k-4 exp { - c km/k]. 

where u is the kinematic viscosity. These time constants are shown plotted versus 
wavenumber in figure 7. A second constraint for the validity of the inviscid 
results is imposed on the interaction (decay) time 27 (the factor of two is neces- 
sary because this time constant was defined in terms of energy); this should be 
greater than the wave period of the wave component of the smallest wavenumber 
participating in the interaction. 

The above constraints restrict the validity of the inviscid results for the 
energy transfer and decay rates to  spectra which are in their initial stages of 
development. For this reason, in the numerical results obtained in the previous 
section, the maximum energy in the spectra, for the linear approximation for the 
sea, was selected to occur at  wavenumbers of O.375Icm, 0-1875km and 0*075k,, 
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FIGURE 7. Characteristic times of gravity-capillary wave periods (TW) 
and viscous damping (TJ. v = cma/s. 

respectively. For these spectra the inviscid theory is only applicable for capillary 
wave components with wavenumbers up to 3 k, or 4 k,. 

The numerical results given in the previous section were obtained for integra- 
tions of k, from 0 to 20 km. However, in an investigation of the separate contribu- 
tions it was found that the energy transfer and decay times were negligible for 
Ic, > 4 k, for k, > 0- 1 k,. For k, = 0.1 k, the energy transfer vanished for k, < 4 k,, 
since for this wavenumber the contribution arises from wavenumbers greater 
than 41cm. 

For oases in which 27 is smaller than the wave period of the gravity wave at  
which the maximum energy of the spectrum of the sea occurs, this must be 
interpreted physically as a broadening of the spectral peak of the line spectrum 
wave rather than a decay of its energy, as was argued by Hasselmann (19638). 

The effect of viscosity on the magnitude of the energy transfer, in first approxi- 
mation, may be accounted for by introducing the term 

Thus, for large wavenumbers the viscous term should predominate in the energy 
flux, and viscosity should serve as an energy sink in the overall balancing process. 
Of course, for more exact results, viscosity must be included a8 initio in the 
analysis. 

8El8t = - 4 ~ k g  E .  (5.3) 
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6.  Conclusions 
We have obtained the energy transfer in gravity-capillary wave spectra using 

Hasselmann’s (1962) inviscid perturbation analysis. In  our case the resonant 
interactions occur at second order because of surface tension. As expected, the 
energy is transferred from two active wave components to a third passive wave 
component. 

The shape of the energy-transfer curve is similar to that found for gravity 
waves; energy is transferred from intermediate wavelengths, now in the neigh- 
bourhood of 1.7 em, toward waves of smaller and larger wavelengths. Evident 
in the energy-transfer curve is a discontinuity for wavenumbers of 2* k, which 
seems to be connected with the instability of 2.44cm wavelengths. From the 
results obtained, the ‘dip’ in the spectrum found for wavelengths in the neigh- 
bourhood of 1-7 ern and light winds maybe a result of energy transfer, because of 
wave-wave interactions. 

The applicability of the inviscid results for the energy flux and interaction 
time for a line spectrum in a ‘background ’ sea is determined from the condition 
that both the time oonstant of viscous decay of the wavenumber participating 
and the resulting interaction (decay) time be greater than the wave period of the 
gravity wave of maximum energy in the spectrum of the sea. 

The new results should shed additional light in the growth of the spectrum in its 
early stages. I n  a more exact analysis viscosity should be introduced in a more 
formal manner, but the mathematics will be a great deal more complex. 

The authors are indebted to Professor Klaus Hasselmann for valuable com- 
ments and suggestions during this investigation. 
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